Performance-Based Placement Design of Tuned Electromagnetic Inertial Mass Dampers
نویسندگان
چکیده
This paper presents a performance-based placement design method for the control of the earthquake responses of a multistory building using tuned electromagnetic inertial mass dampers (T-EIMDs). The T-EIMD consists of a ball screw mechanism, a gear, a flywheel, and an electric generator installed in a cylinder, and a spring element connected in series. The ball screw mechanism converts the axial oscillation of the rod end into the rotational motion of the internal flywheel and generates a large inertial force. The electric generator is turned by the rotation of the inner rod and generates a variable damping force that is controlled by the terminal resistance. The T-EIMDs are installed between adjacent floors of a building with steel chevron braces and function as large tuned mass dampers within the stories. The spring element has the function of tuning the natural period of the T-EIMD to the fundamental natural period of the building. In the present work, a design procedure for the story-wise placement of T-EIMDs is proposed to limit the peak story drift angles to a specified target value. The proposed procedure utilizes the expanded complete quadratic combination method that involves modal analysis with complex eigenvalue analysis and is able to determine the necessary story-wise distribution of inertial masses of the T-EIMDs in a building. Time history earthquake response analyses are carried out for multistory building models set up with the necessary number of T-EIMD units, and the results establish the effectiveness and the adequacy of the proposed performance-based placement design procedure.
منابع مشابه
OPTIMUM PLACEMENT AND PROPERTIES OF TUNED MASS DAMPERS USING HYBRID GENETIC ALGORITHMS
Tuned mass dampers (TMDs) systems are one of the vibration controlled devices used to reduce the response of buildings subject to lateral loadings such as wind and earthquake loadings. Although TMDs system has received much attention from researchers due to their simplicity, the optimization of properties and placement of TMDs is a challenging task. Most research studies consider optimization o...
متن کاملMINIMIZING HANKEL’S NORM AS DESIGN CRITERION OF MULTIPLE TUNED MASS DAMPERS
Tuned mass damper (TMD) have been studied and installed in structures extensively to protect the structures against lateral loads. Multiple tuned mass dampers (MTMDs) which include a number of TMDs with different parameters have been proposed for improving the performance of single TMDs. When the structural system is considered as multiple degrees of freedom (MDOF) and implemented with MTMDs, t...
متن کاملTHE CAPABILITY OF OPTIMAL SINGLE AND MULTIPLE TUNED MASS DAMPERS UNDER MULTIPLE EARTHQUAKES
The main focus of this research has been to investigate the effectiveness of optimal single and multiple Tuned Mass Dampers (TMDs) under different ground motions as well as to develop a procedure for designing TMD and MTMDs to be effective under multiple records. To determine the parameters of TMD and MTMDs under multiple records various scenarios have been suggested and their efficiency has be...
متن کاملOPTIMIZATION CRITERIA FOR DESIGN OF TUNED MASS DAMPERS INCLUDING SOIL–STRUCTURE INTERACTION EFFECT
Many researches have focused on the optimal design of tuned mass damper (TMD) system without the effect of soil–structure interaction (SSI), so that ignoring the effect of SSI may lead to an undesirable and unrealistic design of TMD. Furthermore, many optimization criteria have been proposed for the optinal design of the TMD system. Hence, the main aim of this study is to compare different opti...
متن کاملTuned Mass Dampers for Earthquake Vibrations of High-rise Buildings using Bee Colony Optimization Technique
This paper investigates the application of Artificial Bee Colony (ABC) method for the optimization of Tuned Mass Dampers (TMDs) employed for high-rise structures including Soil Structure Interaction (SSI). The model is a 40-story building, and Newmark method is utilized for the structure response to Bam earthquake data. The objective is to decrease both maximum displacement and accelerati...
متن کامل